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The effects that planar faults have on the powder diffraction peak profiles of a

face-centered cubic (f.c.c.) material are studied considering the case of small

crystallites. In doing so a new method to calculate the planar probability

correlation function of a faulted crystallite is presented which considers the

finite extent of the planar sequence. The resulting correlation function is

demonstrated to be dependent on the position of a fault in a crystallite through

its proximity to a crystallite boundary. The average correlation function found

considering equal probability of a fault existing on each plane in a crystallite is

compared with that found by solving a system of recursion relations. The

broadened subcomponents of the f.c.c. powder profiles are shown to be related

to the correlation function through a general Fourier series expression. This

expression is then used to simulate peak profiles from the developed model, and

then compare them with those predicted by the recursion relation treatment.

1. Introduction

The study of a diffraction spot, or profile, to extract infor-

mation on the stacking faults contained in the material dates

back to the 1930s (Hendricks et al., 1930). Since this early work

on cobalt, the theoretical description of how faulting influ-

ences the diffraction pattern has been repeatedly refined,

extending it to low-symmetry crystal structures and complex

faulting configurations (Estevez-Rams et al., 2007). However,

it has not been widely considered how the effect of faulting

changes as the crystallite becomes small, or when the fault is

positioned near a crystallite boundary. These considerations

become increasingly important to characterize the nano-

materials which are being developed for use in modern tech-

nologies. We will limit our discussion to the well established

case of faulting in face-centered cubic (f.c.c.) domains, to serve

as an example of how a small crystallite size influences the

features observed in the powder pattern from faulting.

Beginning with the description of Warren (1990), the

intensity in reciprocal space from a finite crystallite containing

faults can be expressed as

I ¼  2
P1

m¼�1

Nmhexpði�ðmÞÞi expð2�imh3=3Þ: ð1Þ

In this expression (Warren, 1990, equation 13.39) the f.c.c.

lattice is described in terms of a hexagonal lattice with

continuous reciprocal-space coefficients h1 and h2 defined in

the (111) plane and h3 normal to the plane. The symbol  2

represents the form factor of the planes and is factorized

outside the sum by approximating the crystallite as a columnar

stack of (111) planes with equivalent cross sections. The term

Nm represents the number of pairs of planes separated by a

distance md111, where m is an integer and d111 is the distance

between planes in the stack, and hexpði�ðmÞÞi is the average

phase factor due to the relative displacement of each plane.

This factor is determined considering how the phase changes

when scattering occurs from two planes of different type. Since

f.c.c. can be represented as an ABC stacking, there are only

three distinct phase factors:

�0ðmÞ ¼ 0 when the pair is of the same type (i.e. AA);

�1ðmÞ ¼ �2�ðh1 � h2Þ=3 when the pair is a positive

sequence (i.e. AB); and

�2ðmÞ ¼ 2�ðh1 � h2Þ=3 when the pair is a negative sequence

(i.e. AC).

The average phase factor is then expressed as

hexpði�ðmÞÞi ¼ P0ðmÞ expði�0ðmÞÞ þ P1ðmÞ expði�1ðmÞÞ

þ P2ðmÞ expði�2ðmÞÞ; ð2Þ

where PiðmÞ is the probability of finding a pair of planes of the

type i, separated by m planes. In a powder, symmetry exists

between P1ðmÞ and P2ðmÞ because a positive stacking

sequence will then become negative when observed from the

opposite point of view. Therefore, these two probabilities are

equal and utilizing the normalization condition gives

hexpði�ðmÞÞi ¼ P0ðmÞ þ ð1� P0ðmÞÞ cosð2�ðh1 � h2Þ=3Þ: ð3Þ

Therefore, the effect of faulting on the powder pattern of f.c.c.

crystallites is completely determined by the probability

correlation function, P0ðmÞ.

Most existing methods to calculate this function rely on a

probabilistic treatment, similar to the initial works of

Hendricks & Teller (1942), as well as Wilson (1942), which

relate the probability of a fault existing on a given plane to the
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type of the preceding plane. A parametrized form of a

modulating function is then assumed and recursion relations

are used to solve the correct parameters (Warren, 1990;

Estevez-Rams et al., 2008). The appeal of this recursion

approach is that it allows for the direct determination of the

fault probability in the sample independent of crystallite size.

However, the assumptions made in solving the equations are

not suited for small crystallites. First, many of the developed

recursion solutions assume intrinsically an infinitely large

stack, which does not consider how a surface might influence

the planar correlation. One proposed general solution for a

finite stack is based on a self-similar recursion treatment, and

was developed by Treacy (Treacy et al., 1991) for use in the

diffraction pattern simulation software DIFFaX. However, it

relies on a statistical description of the interplanar transitions

which are the same throughout the crystallite and for a crys-

tallite of any size. Therefore, the effect of a surface on these

transition probabilities has not been handled explicitly.

Further assumptions which are not suitable for small crystal-

lites are: a sequence consisting of only a few layers is

considered to set up the recursion equations, and each layer is

given an equal probability of containing a fault plane. This

does not allow for possible control over the position of the

fault in a crystallite, and in fact assumes that any arrangement

of multiple faults is equally probable conserving the global

fault probability. An alternative to this description was first

developed by Jagodzinski, who considered more layers in the

recursion relations (Jagodzinski, 1949a,b). However, in this

case the infinite stack assumption was again used in solving the

final form of the correlation function.

In order to study the effect of faulting in a small crystallite it

is necessary to develop a different strategy to calculate the

probability correlation function. In our approach, first a basic

understanding of how a fault changes the correlation between

a pair of planes is discussed. Then it will be shown how a

termination in the sequence affects this correlation, and

simple statistical reasoning will be used to derive analytical

expressions for the probability correlation function of a finite

stack containing a fault. Finally, an ensemble average of these

expressions is carried out to obtain a form of probability

correlation function more consistent with that observed in a

powder. A demonstration of the resulting diffraction profiles

concludes this study along with a comparison with peak

profiles obtained assuming the latest formulation of the

recursion method solution for f.c.c. materials. This type of

model is especially suited for small crystalline domains, thin

films or metal nanoparticles, whose energetics do not allow for

large numbers of faults within a given domain. It is then not

suited to study multiple twinned particles, which can contain

three or five twin faults arranged in a non-crystallographic

symmetry (Marks, 1994; Cervellino et al., 2003).

2. Effect of deformation faults

To understand how faulting changes the correlation between

planes, it is enough to study an example stacking sequence

before and after the creation of a fault. Here we will only

consider the forward stacking direction and later account for

the opposite stacking direction in the calculation of the

powder diffraction pattern [see discussion leading to equation

(3)]. The f.c.c. lattice is represented as a stack of (111) planes

and the ABC convention is used to denote the three different

plane types. As shown in the following examples the fault

position is denoted by a pipe ‘|’ in the sequence.

. . . ABCABCA . . . ðperfectÞ ð4aÞ

. . . ABCAjCAB . . . ðdeformation faultÞ ð4bÞ

. . . ABCAjCBA . . . ðtwin faultÞ ð4cÞ

Any pair of planes can be characterized by the number of

planes which are spanned, m, and the number of steps

between these planes in a forward permutation, which we will

call the pair type, i [i.e. i ¼ 1 for (AB) and i ¼ 2 for (AC)]. It is

readily noticed that for a perfect stacking sequence all pairs

with a separation m are of type i, where i � m mod n and n is

the number of different plane types in the sequence. A

separation, m, can then be said to belong to the set mi, making

the calculation of P0ðmÞ trivial for an infinite perfect stacking

sequence. In this case all spacings in the set m0 are between

pairs of type 0, implying P0ðm0Þ ¼ 1, and these are the only

spacings between pairs of type 0, so P0ðmi 6¼0Þ ¼ 0.

By studying the planar sequence of equation (4b) we find

that a deformation fault affects the planes after the fault by

changing them to the next type in the forward permutation

sequence. Also, only a pair of planes which has a fault between

them will have their pair type affected by this change.

Comparison of stacking sequences with and without a defor-

mation fault, such as those depicted in equations (4a) and

(4b), finds that a pair, �i, which spans a fault will change its

type, i, following

�0!
f

�01; �1!
f

�02 and �2!
f

�00: ð5Þ

In these relations the pairs which do not span a fault are

depicted on the left of the arrow, while on the right denoted

with an apostrophe are the new pair types due to the pair

spanning a fault. By this notation, the transformation of

ðAAÞ!
f
ðABÞ

0 falls in the case of �0!
f

�01. A stacking fault

then not only increments the plane type, but also has the effect

of incrementing the pair type.

In an infinite stack the number of pairs separated by m

planes which can span a fault is always m. However, in a finite

stack the number of pairs which span a fault depends on the

distance from the fault plane to a surface boundary. For

example, considering the finite stacks

ABCAjCABCABC ðp ¼ 4Þ

ABCjBCABCABC ðp ¼ 3Þ

ABjABCABCABC ðp ¼ 2Þ;

it is evident that in the case of the first fault position depicted,

p = 4, four distinct pairs having a spacing of four planes (m = 4)

can span the fault plane. When the fault position is moved to

p ¼ 3, only three such pairs span the fault and similarly two
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pairs for p ¼ 2. Considering other pair separations it is found

that the number of pairs which span a fault, Nf , is dependent

on both the spacing, m, and the fault position, p, and is

conditionally expressible as

NfðN;m; p0Þ ¼

m m � p0

p0 p0<m � N � p0

N �m N � p0<m:

8<
: ð6Þ

Here p0 is the number of planes from the fault to the nearest

surface, and for a deformation fault

p0 ¼

�
p p � N=2

N � p N=2< p:

The case of N � p0<m in equation (6) means both boundaries

are limiting the number of pairs which span the fault, and all

pairs in the stack of separation m span the fault.

Using this relationship and the relations of equation (5), the

probability correlation function for a finite stack containing a

deformation fault can be derived. If m 2 m0 every pair which

spans the fault will become a 1-type, so the fraction of pairs

which are 0-type is the complement of the fraction which spans

the fault. When m 2 m1, the number of pairs which become

0-type does not change, and when m 2 m2 the fraction of

faults which become 0-type is the fraction which spans the

fault. These observations, along with equation (6), result in a

probability correlation function of the form

P0ðmÞ ¼

m0 m1 m2

1�
m

N �m
; 0;

m

N �m
m � p0

1�
p0

N �m
; 0;

p0

N �m
p0<m � N � p0

0; 0; 1 N � p0<m:

8>>>>><
>>>>>:

ð7Þ

A series of correlation functions calculated using this rela-

tionship is shown in Fig. 1 for a 50-layer stack containing a

deformation fault at different positions. When the fault is near

the boundary the planar correlation resembles that of a

perfect f.c.c. stack as only correlations for large m are altered.

As the fault is moved toward the center of the stack the P0ðmÞ

for smaller separations become increasingly affected. After

the fault crosses the middle of the stack a symmetry is

observed for the cases of p ¼ 15 and p ¼ 35, as well as p ¼ 5

and p ¼ 45, due to their equivalent distance to the nearest

surface, p0.

3. Effect of twin faults

The same general treatment described in the previous section

can be adopted to study the case of a finite stacking sequence

containing a twin fault. Considering a twin located on an A

plane, as in the stack shown in equation (4c), we find that the

twin fault has the following effects on pair type:

ðAAÞ!
t
ðAAÞ0; ðBBÞ!

t
ðBCÞ0; ðCCÞ!

t
ðCBÞ0;

ðABÞ!
t
ðACÞ0; ðBCÞ!

t
ðBBÞ0; ðCAÞ!

t
ðCAÞ0;

ðACÞ!
t
ðABÞ

0; ðBAÞ!
t
ðBAÞ

0; ðCBÞ!
t
ðCCÞ

0; ð8Þ

where now the t above the arrow signifies that transformations

are due to the pair spanning a twin fault. Unlike the case of the

deformation fault, the expressions in equation (8) are now

specifically dependent on the pair and twin plane, so the �i

notation has not been used. Here we only describe the case of

a twin on an A-type plane, but analogous expressions are

found for a twin on a B or C plane. The transformations like

those in equation (8) define the important pairs to consider

when calculating P0ðmÞ. For instance, for the case of an A-type

twin it becomes apparent that P0ðm0Þ of an ideal stacking will

be decreased by an amount proportional to the number of

(BB) and (CC) pairs which span the twin fault. Also, P0ðm1Þ

will be increased by an amount related to the number of (BC)

pairs spanning the fault, and similarly P0ðm2Þ will be increased

by the proportion of (CB) pairs. Assuming the fault is not near

a boundary, we find that the number of important pairs has a

solution independent of the fault type:

N0ðm;m � pÞ ¼

(
2m=3 m 2 m0

ðm� 1Þ=3 m 2 m1

ðmþ 1Þ=3 m 2 m2;
ð9Þ

where N0 is the number of pairs which span the twin fault and

influence P0ðmÞ – the second criterion being what differ-

entiates this quantity from Nf , defined in equation (6).

When the number of important pairs becomes influenced by

the presence of a surface boundary, the relationship describing

their abundance becomes dependent on the twin plane type.

We will define the twin plane type, t, relative to its distance

from the left boundary by t � p mod n. The number of

important pairs for p0<m � N � p0 is found by considering a

sequence without a boundary, and subtracting the number

which are missing due to the nearest boundary. This can be

expressed as

N0ðp
0
Þ ¼ N0ðm;m � p0Þ � N

m�p0

X ; ð10Þ

where N
m�p0

X is the number of planes of type X in a perfect

stack of length ðm� p0Þ. The plane type, X, is determined as

the first plane of an important pair for a given twin type. For

instance, considering again an A-type twin (t ¼ 1), when

m 2 m1, the important pair is (BC), so X is B in this case.

Using expression (10), and considering the three possible twin

types, the following expression for N0 when p0<m � N � p0 is

found:

N0ðm; p0<m � N � p0Þ ¼

(
ð2p0 þ a0Þ=3 m 2 m0

ðp0 þ a1Þ=3 m 2 m1

ðp0 þ a2Þ=3 m 2 m2;
ð11Þ

where the constants, ai, have a dependence on the twin type, t,

and are given in Table 1.

The final case to consider is when the planar spacing is large

enough that the correlation function is influenced by both

surfaces. Now all pairs in the system span the fault so it is
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necessary to determine the number of important pairs which

exist in a stack of length N. In doing so one finds N0ðmÞ is not

only a function of the fault type, which determines the

important pairs, but also is dependent on the extent of the

stacking. Therefore, we can define the stack type, s, as,

s � N mod n. Again, considering all possible combinations of

s, t and m it is found that N0ðN �mÞ takes the form

N0ðm;N � p0<mÞ ¼

(
ð2ðN �mÞ þ b0Þ=3 m 2 m0

ððN �mÞ þ b1Þ=3 m 2 m1

ððN �mÞ þ b2Þ=3 m 2 m2;
ð12Þ

where the constants, bi, are given in Table 2 for the possible

combinations of t and s.

Putting together the three discussed cases, the probability

correlation function for a finite stack of N planes containing a

twin fault at position p is given by

P0ðmÞ ¼

m0 m1 m2

1�
2m

3ðN �mÞ
;

m� 1

3ðN �mÞ
;

mþ 1

N �m
m � p0

1�
2p0 þ a0

3ðN �mÞ
;

p0 þ a1

3ðN �mÞ
;

p0 þ a2

3ðN �mÞ
p0<m � N � p0

1�
2ðN �mÞ þ b0

3ðN �mÞ
;
ðN �mÞ þ b1

3ðN �mÞ
;
ðN �mÞ þ b2

3ðN �mÞ
N � p0<m:

8>>>>>>>>>><
>>>>>>>>>>:

ð13Þ

It should be noted that, just like for deformation faults, p0 is

actually the distance of the twin plane to the nearest boundary.

However, for twins the fault position changes depending on

which boundary is considered. For example, a twin position

defined from the left boundary is ABCAB|ACBA, as the

disruption in the stacking is only evident after the fifth plane.

However, the twin position for the same stack starting from

the right boundary and moving to the left is ABCA|BACBA.

Therefore, it follows for twins

p0 ¼

(
p p � ðN þ 1Þ=2

N � pþ 1 ðN þ 1Þ=2< p:

This relationship also defines the symmetry of P0ðmÞ with

respect to the twin position (i.e. the case of p ¼ 5 is equivalent

to p ¼ N � 4).

The probability correlation functions given by equation (13)

for a planar stack containing a twin at different positions are

plotted in Fig. 2. The effect of a twin fault on the planar

correlation is seen to be strikingly different to that of a
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Figure 1
The probability correlation functions, P0ðmÞ, calculated using equation (7) are depicted for a 50-layer stack containing a deformation fault at a series of
positions, p. In each case the values of the set m0 are denoted by squares, those of the set m1 by circles, and those of the set m2 by triangles to allow for
their clear distinction.

Table 2
Constants for N0(m) of equation (12).

b0 b1 b2

s ¼ 0 s ¼ 1 s ¼ 2 s ¼ 0 s ¼ 1 s ¼ 2 s ¼ 0 s ¼ 1 s ¼ 2

t ¼ 0 0 1 2 1 0 2 �1 1 0
t ¼ 1 0 �2 �1 1 0 �1 �1 �2 0
t ¼ 2 0 1 �1 �2 0 �1 2 1 0

Table 1
Constants for N0(m) of equation (11).

a0 a1 a2

t ¼ 0 0 0 0
t ¼ 1 �2 �1 �1
t ¼ 2 �1 �2 1



deformation fault, depicted in Fig. 1, as the function now tends

to 1/3 for large m, and the values for the set m1 are no longer

zero. It is apparent that as the twin moves beyond the center of

the stack, positions like p ¼ 5 and p ¼ 45 result in similar

correlation functions, but differ at larger m, as the rule for twin

position symmetry is not exactly observed in this case.

4. Average fault position

The above expressions can be used to derive the average

probability correlation function that results from a system of

crystallites each containing one fault at different positions.

This quantity is of more interest to powder diffraction since

the observed pattern is the result of an averaging over the

intensity from many crystallites in a sample. For the moment,

assuming that all crystallites in a system contain the same

number of planes, the average correlation function is given

simply as

P0ðmÞ ¼
P

p

wpP0ðmÞ; ð14Þ

where wp is the number fraction of the fault positions

considered in the average and thus must follow
P

p wp ¼ 1.

Neglecting any consideration of fault energetics, the most

straightforward assumption is one where all fault positions are

equally probable. While possibly unjustified in some cases, this

assumption puts the developed model on similar footing as

previous models for the effect of faulting on the diffracted

intensity, as it is commonly assumed that all planes have an

equal probability of containing a fault. In this case for crys-

tallites containing a deformation fault the sum over p in

equation (14) is from the first plane to the N � 1 plane,

because a deformation fault on the Nth plane does not result

in a fault in the stacking sequence. The number fraction for

an equally probable fault position is then given by

wp ¼ 1=ðN � 1Þ. The expression for the correlation function

of this average fault position can be solved analytically

by considering two cases, that of 0 � m<N=2 and

N=2 � m � ðN � 1Þ. For the first case the average probability

correlation function when m 2 m0 is given by

P0ðmÞ ¼
2
Pm

p0¼1½1� p0=ðN �mÞ� þ 2
PN=2

p0¼mþ1½1�m=ðN �mÞ�

N � 1

P0ðmÞ ¼ 1�
m

N � 1
;

while in the second case for N=2<m � N � 1, the average

probability correlation function is expressed as

P0ðmÞ ¼
2
PN�m�1

p0¼1 ½1� p0=ðN �mÞ� þ 2
PN=2

p0¼N�m 0

N � 1
;

P0ðmÞ ¼ 1�
m

N � 1
:

In the above derivation only the relations for the set of m0

were shown, but following the same steps expressions for m1

and m2 can be derived. The final expression for the average

correlation function for a system of crystallites each

containing one deformation fault is then found to be

m0 m1 m2

P0ðmÞ ¼

�
1�

m

N � 1
; 0;

m

N � 1
:

ð15Þ

The average fault position correlation function for crystallites

containing a twin fault is also calculated in this way. However,

in this case only N � 2 twin positions are considered, since the

twin positions p ¼ 1 and p ¼ N result in a planar correlation

which is the same as a perfect stack. Following the steps as for

the deformation fault case, and properly accounting for the ai
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Figure 2
The series of P0ðmÞ shown has been calculated using equation (13) for a stack containing a twin fault at different positions, p. The sets mi are denoted by
the same shapes as in Fig. 1.



and bi constants, results in an average correlation function of

the form

m0 m1 m2

P0ðmÞ ¼

�
1�

2m

3ðN � 2Þ
;

m� 1

N � 2
;

mþ 1

N � 2
:

ð16Þ

It is then interesting to compare this form of the correlation

function with that derived from the recursion equation

method. The expression for the probability correlation func-

tion given by Estevez-Rams (E-R; Estevez-Rams et al., 2008)

is the most recent form which has been derived for faulting in

close-packed f.c.c. lattices. The average correlation function

for a powder of crystallites of 50 layers containing one fault is

compared to the E-R correlation function for a stacking

sequence of the same fault probability (� ¼ 1=50 or � ¼ 1=50)

in Fig. 3. The difference between these expressions, shown

below the correlation functions, clearly depicts how these

models deviate with increasing correlation length. The E-R

model decays slower than the derived model, and asymptoti-

cally tends to the value of 1/3 for both deformation and twin

faults. Differences in the trends are expected because, as

previously discussed, the recursion relation method is solved

assuming an infinite stack and intrinsically allows for the

possibility that a crystallite contains multiple faults in terms of

increasing faulting probability. The developed models, instead,

are more specific and only consider the effect of one fault in a

finite stack of layers.

5. Limit of P0(m) as N becomes large

The fault position and pair spacing can be expressed in terms

of the stack length N,

m ¼ �N 0 � �< 1

p ¼ �N 0<�< 1;

where � and � are fractional coefficients. Substituting these

expressions into equation (7), the probability correlation

function for a stack containing a deformation fault then

becomes independent of N,

P0ðmÞ ¼

m0 m1 m2

1�
�

1� �
; 0;

�

1� �
� � �

1�
�

1� �
; 0;

�

1� �
�<� � 1� �

0; 0; 1 1� �<�:

8>>>>>>><
>>>>>>>:

ð17Þ

This independence of N means that the effect of a single

deformation fault on the correlation function is the same

regardless of the domain size.

The case of a twin fault is different. Substituting the new

expressions for m and p into equation (13), a functional

dependence on N remains from equations (11) and (12), and

the expression of P0ðmÞ for a twin becomes

P0ðmÞ ¼

m0 m1 m2

1�
2�

3ð1� �Þ
;

�

3ð1� �Þ
;

�

3ð1� �Þ
� � �

1�
2�þ a0=N

3ð1� �Þ
;

�þ a1=N

3ð1� �Þ
;

�þ a2=N

3ð1� �Þ
�<� � 1� �

1�
2ð1� �Þ þ b0=N

3ð1� �Þ
;
ð1� �Þ þ b1=N

3ð1� �Þ
;
ð1� �Þ þ b2=N

3ð1� �Þ
1� �<�:

8>>>>>>>>>><
>>>>>>>>>>:

ð18Þ

Therefore, some terms in the planar correlation function of a

twinned stack have a 1=N dependence, which will be prevalent

for small domain sizes. As N becomes large the constants ai=N

and bi=N go to zero and this expression can be approximated

as

P0ðmÞ ¼

m0 m1 m2

1�
2�

3ð1� �Þ
;

�

3ð1� �Þ
;

�

3ð1� �Þ
� � �

1�
2�

3ð1� �Þ
;

�

3ð1� �Þ
;

�

3ð1� �Þ
�<� � 1� �

1
3 ;

1
3 ;

1
3 1� �<�:

8>>>>>>>><
>>>>>>>>:

ð19Þ

The error introduced when using the large N expression is

1=N, so a stack of 100 layers containing a twin fault will be

within roughly 1% of the exact expression when using equa-

tion (19) rather than equation (13). This size dependence is

not possible to observe in the correlation functions derived

from recursion relations due to the previously discussed infi-

nite stack assumption.

6. Calculation of powder diffraction peak

The remainder of this study will be focused on the powder

diffraction peak profile resulting from the described models

for the planar correlation function. As discussed by Warren

(1990), the average phase factor for a powder in equation (3)

can take on two forms,

hexpði�ðmÞÞi ¼

(
1 L0 ¼ 0 ðmod 3Þ

ð3P0ðmÞ � 1Þ=2 L0 ¼ �1 ðmod 3Þ;

where L0 is related to the f.c.c. peak indices by L0 ¼ hþ kþ l.

Since the average phase factor is not affected by a change in

the probability correlation function, when L0 ¼ 0 ðmod 3Þ, we

will refer to those members of the hkl family of reflections as

the unbroadened subcomponents. Furthermore, those who

satisfy L0 ¼ �1ðmod 3Þ will be referred to as the broadened

subcomponents. Considering the broadened case, it is shown

that the expression for the intensity in reciprocal space given

by equation (1) becomes

Iðh1h2h3Þ ¼  
2
X1

m¼�1

N mj j

3P0ð mj jÞ � 1

2
cosð2� mj jh3=3Þ; ð20Þ
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as both P0ðmÞ and Nm are mirrored about m ¼ 0. The

continuous variable h3 can then be expressed in terms of its

vicinity to the reciprocal-space point L0,

h3 ¼ L0 þ�h3

After substituting this expression for h3 into equation (20),

expanding the cosine and properly accounting for the

dependence of the sine function on |m| into the amplitude

coefficient, the sum in equation (20) becomes a Fourier series,

Iðh1h2�h3Þ ¼  
2
X1

m¼�1

Am cosð2�m�h3=3Þ þ Bm sinð2�m�h3=3Þ;

ð21aÞ

Am ¼ N mj j

3P0ð mj jÞ � 1

2
cosð2�mL0=3Þ when L0 ¼ �1 ðmod 3Þ;

ð21bÞ

Bm ¼ �
m

mj j
N mj j

3P0ð mj jÞ � 1

2
sinð2�mL0=3Þ when L0 ¼ �1 ðmod 3Þ:

ð21cÞ

This expression then gives the general relation between the

probability correlation function, P0ðmÞ, and the Fourier

coefficients Am and Bm. For the unbroadened subcomponents

a similar Fourier series is found with coefficients of the form

Am ¼ Njmj when L0 ¼ 0 ðmod 3Þ

Bm ¼ 0 when L0 ¼ 0 ðmod 3Þ;

which are not surprisingly only influenced by the stack size.

The powder-pattern intensity from a given hkl component

can be approximated by remapping the intensity given in

equation (21a) to that observed along the shkl direction

(Velterop et al., 2000; Warren, 1990), where shkl =

ðh2 þ k2 þ l2Þ
1=2=a ¼ 2 sin �hkl=	 and a is the f.c.c. unit-cell

parameter. Therefore, the contribution to the peak profile

from a single component of a family of reflections becomes

Iðshkl;�sÞ ¼
Ieð�ÞNaR	2f 2ð�ÞLð�Þ3a2shkl

16�Va L0

�� ��
�

X1
m¼�1

�
Am

N
cos

2�a2shkl

L0

m�s

� �

þ
Bm

N
sin

2�a2shkl

L0

m�s

� ��
;

which is analogous to Warren’s equation 13.59, and most of

the variables have the same meaning. The only differences are

that here Na represents the number of atoms, Va signifies the

volume per atom, and Lð�Þ represents the Lorentz factor as

the polarization factor is included in Warren’s definition of

Ieð�Þ (see Warren, 1990, p. 29). Also, the term 1=B3j sin ’j used

in Warren’s expressions has been expressed here in the form

3a2shkl=L0.

The observed diffraction profile is then the sum of the peaks

from all broadened and unbroadened subcomponents of an

hkl reflection, and can be calculated following the considera-

tions described by Velterop et al. (2000). To highlight the effect

of faulting on the peak profile we will consider the intensity

without contributions from the Lorentz polarization or atomic

scattering factors defined as

I0ðshkl;�sÞ ¼
3a2shkl

L0

�� �� X1
m¼�1

�
Am

N
cos

�
2�a2shkl

L0

m�s

�

þ
Bm

N
sin

�
2�a2shkl

L0

m�s

��
: ð22Þ

It should be noted that the peak broadening given by this

formulation only considers the contributions from faulting and

finite stack size normal to the fault plane. Peaks from small

crystallites will also be broadened due to their small planar

cross section. Therefore, the profiles presented here are not

fully representative of the observable peaks from small crys-

tallites containing faults, but are intended for the comparison

of profile features that are the result of different faulting

models.

As an example of how the powder diffraction peak is

affected by different fault positions, a series of profiles of

broadened subcomponents were calculated employing the

probability correlation functions given by equations (7) and

(13) for deformation and twin faults. The subcomponents

broadened by deformation faults are depicted in Fig. 4 for a
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Figure 3
Comparison of P0ðmÞ with that given by the expression of E-R (Estevez-
Rams et al., 2008) for a stack of 50 planes containing (a) a deformation
fault or (b) a twin fault. Below each figure the difference is given,
Diff: ¼ ðP0ðmÞ � PE-R

0 ðmÞÞ. Again, the sets mi are denoted by the same
shapes as in Fig. 1.



series of fault positions in a stack of 50 Au (111) planes. It is

seen that the profile shows the most broadening and shifting

when the fault is in the center of the stack ðp ¼ 25Þ for all

peaks considered. For this fault position, a large amount of

asymmetry is observed in the peak shape, even to the extent

that a second peak is apparent in the direction opposite to

the peak shift. Moving the deformation fault closer to the

boundary (decreasing p) has the effect of diminishing the

features due to the deformation fault, and the contribution for

size broadening becomes the defining characteristic. This

behavior is best understood by considering that a fault has the

most influence on P0ðmÞ when it is at the stack center, as

shown in Fig. 1. The more the correlation function deviates

from that of a perfect stack, the more the peak profile is

influenced.

The same study of the broadened components due to a twin

fault at different positions is shown in Fig. 5. The effect of the

twin on peak shape is different from that due to the defor-

mation fault as the predominant effect is observed to be

profile broadening. It is again found that the most broadened

profile is obtained when the twin plane is in the center of the

stack, and the broadening decreases as the fault moves toward

the boundary.

In terms of the powder pattern the positional dependence is

not as important as the average quantity. The diffraction

profile due to a collection of crystallites which contain one

fault and equal probability of all fault positions can also be

calculated using equation (22), but now employing equations

(15) and (16) to describe P0ðmÞ. Some resulting powder peaks,

as well as the contributions from all subcomponents of the

peak (broadened and unbroadened), are depicted in Fig. 6 for

deformation faults, and Fig. 7 for twin faults. Also depicted in

these figures are the profiles resulting from the E-R correla-

tion functions, as well as the difference between the total

profiles from the two models. In all cases the profiles are

calculated assuming a stack of 50 Au (111) planes, with a

faulting probability assumed to be 1/50.

The case of deformation faulting leads to the largest

difference in peak profiles predicted by the two models. As

shown in Fig. 6, the peaks from the developed average fault

position model are more shifted and broadened than those

found using the E-R model. The calculated 111 and 200 peaks

are prime examples, as the calculated differences between the

peak shapes are shown to reach as much as � 20% of the

calculated intensities. For the patterns due to twinning a better

agreement is found between the developed model and the E-R

model. The peaks from the average position model show only

slightly more broadening than the E-R model peaks. Again

the 311 peaks are found to have the best agreement, as the 111

and 200 peaks differ by at most � 10% of the calculated

intensities. Referring back to Fig. 3 it is apparent that the

better agreement for the case of twinning stems from the fact

that there is a better match between the two twin correlation

functions than those for deformation faults.
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Figure 4
The extent of broadening and shifting caused by a deformation fault at different positions, p, is depicted for a few broadened subcomponents of powder
diffraction peak profiles. A stack of 50 Au (111) planes with a lattice parameter a of 0.40809 nm was assumed in the calculation of the presented profiles.
The case of p ¼ 25 is then a fault at the center of the stack with the fault moving toward the left boundary as p is decreased.



7. Influence of P0(m) on peak broadening and
asymmetry

To further study the influence of P0ðmÞ on the broadened peak

shape, the sum in equation (21a) can be rewritten as

Iðh1h2�h3Þ ¼  
2
P1

n¼�1

�
A3 nj j�1 cosð2�ð3 nj j � 1Þ�h3=3Þ

þ B3 nj j�1 sinð2�ð3 nj j � 1Þ�h3=3Þ

þ A3 nj j cosð2�3 nj j�h3=3Þ

þ B3 nj j sinð2�3 nj j�h3=3Þ

þ A3 nj jþ1 cosð2�ð3 nj j þ 1Þ�h3=3Þ

þ B3 nj jþ1 sinð2�ð3 nj j þ 1Þ�h3=3Þ
	
:

After expanding the cosine and sine functions this is found to

be equivalent to

Iðh1h2h03Þ ¼  
2
P1

n¼�1

A0n cosð2�n�h3Þ þ B0n sinð2�n�h3Þ;

ð23aÞ

A0n ¼ A3 nj j þ cosð2��h3=3ÞðA3 nj jþ1 þ A3 nj j�1Þ

þ sinð2��h3=3ÞðB3 nj jþ1 � B3 nj j�1Þ; ð23bÞ

B0n ¼
n

nj j

�
B3 nj j þ cosð2��h3=3ÞðB3 nj jþ1 þ B3 nj j�1Þ

þ sinð2��h3=3ÞðA3 nj j�1 � A3 nj jþ1Þ
	
: ð23cÞ

Substituting in equation (23) the expressions for Am and Bm of

equation (21) leads to the following relationships defining the

coefficients of equation (23):

A0n ¼ N3 nj j

�
cosð2�L0=3Þ

3P0ð3 nj jÞ � 1

2

þ cosð2�ðL0 þ�h3Þ=3Þ

�
3ðP0ð3 nj j þ 1Þ þ P0ð3 nj j � 1ÞÞ

2
� 1

��

þ
3ðP0ð3 nj j þ 1Þ � P0ð3 nj j � 1ÞÞ

2
; ð24aÞ

B0n ¼ �
n

jnj

�
N3 nj j

�
sinð2�L0=3Þ

3P0ð3 nj jÞ � 1

2

þ sinð2�ðL0 þ�h3Þ=3Þ

 
3ðP0ð3 nj j þ 1Þ � P0ð3 nj j � 1ÞÞ

2
� 1

�#

þ
3ðP0ð3 nj j � 1Þ � P0ð3 nj j þ 1ÞÞ

2

)
: ð24bÞ

When n is small these coefficients are dominated by the part

multiplied by N3jnj. It is then evident in equation (24) that the

cosine coefficients, A0n, which can be attributed to peak

broadening, are largely dependent on the sum of the P0ðm1Þ

and P0ðm2Þ terms. Furthermore, the sine coefficients, B0n,

commonly attributed to peak asymmetry, are determined by

the difference between these P0ðm1Þ and P0ðm2Þ terms. These

relationships are true in general for any probability correla-
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Figure 5
The extent of broadening caused by a twin fault at different positions, p, is depicted for a few broadened subcomponents of powder diffraction peak
profiles. The assumptions of the size and type of stack used to calculate the profiles are the same as those given in Fig. 4.
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Figure 6
The subcomponents and total diffraction profiles are given for the 111,
200 and 311 peaks assuming both the average deformation fault position
model, and the model for f.c.c. faulting developed by Estevez-Rams et al.
(2008). For consistency the fault probabilities assumed in the E-R model
were � ¼ 1=50 and � ¼ 0. Below the calculated peaks is the difference
between the total profiles given from the relation, Diff: ¼ IAvg:Pos: � IE-R.
In each peak the ‘broadened’ components are depicted by dashed lines,
while the ‘unbroadened’ component is depicted by a dotted line.

Figure 7
The subcomponents and total diffraction profiles are given for the 111,
200 and 311 peaks assuming the average twin-fault position model, and
the model for f.c.c. faulting developed by Estevez-Rams et al. (2008). In
this case the fault probabilities assumed in the E-R model were � ¼ 0 and
� ¼ 1=50. The difference between models and the components of each
peak are depicted in the same way as described in Fig. 6.



tion function of an f.c.c. stacking. In terms of our study this is

the key to explaining why the peak shape of a stack containing

a deformation fault exhibits an asymmetry and shift, whereas

that containing a twin is primarily broadened. The correlation

function derived for a deformation fault in equation (15) has a

difference in the P0ðm1Þ and P0ðm2Þ terms given by �P0ðm2Þ,

whereas this difference for a twin fault, from equation (16), is

nearly zero except when there are few planes in the stacking.

It can then be argued that some of the observed shift in

peak position commonly attributed to deformation faults is

actually a consequence of the strong peak asymmetry. This

result maybe somewhat surprising since, following the treat-

ment of Warren (1990), it is commonly believed that any peak

asymmetry is only due to twin faulting. As shown in Fig. 7, it is

not incorrect that peaks broadened by twins exhibit slight

asymmetry, however, the fact that the profiles from defor-

mation faults also result in peak asymmetry calls into question

the validity of methods which rely solely on the peak asym-

metry and peak shift to quantify the deformation and twin

fault densities.

The true limit of information obtainable from studying a

faulted f.c.c. powder diffraction peak profile is found by

considering that due to the nature of the Fourier series, such as

that in equation (24), a profile can only be uniquely linked to

an average P0ðmÞ. Therefore, if multiple faulting scenarios

result in the same average correlation function, then powder

diffraction cannot distinguish between them. The separation

of the faulting effect from the broadening due to crystallite

size and other strains is only possible by simultaneously

considering the profiles of multiple reflections in the pattern.

The modified Williamson–Hall analysis is one proposed

method to consider the effect of faulting on the broadening of

multiple reflections (Ungár et al., 1998). However, only

information on the peak in terms of its full-width half-

maximum (FWHM) or integral breadth (IB) is used to

determine the faulting densities. In the process of simplifying

the treatment, important information about the complicated

shape of the peak from the many subcomponents and faulting

effects is neglected (Velterop et al., 2000), making the fault

densities found from this method quantitatively less reliable

(Scardi et al., 2004). A slightly more sophisticated treatment

has recently been proposed in the convolutional multiple

whole profile (CMWP) modeling framework, which has

parametrized the influence of different fault probabilities on

the FWHM, asymmetry and peak positions of profile

subcomponents (Balogh et al., 2006). While accounting for

some aspect of the peak shape by considering multiple

subcomponents, the description of the profiles in terms of a

few parameters again neglects a fair amount of information in

the peak shape and use of a Lorentzian function to describe

the peak shape may bias the results. Just by inspecting the

subcomponents of peak profiles simulated in the present

paper it is quickly concluded that a profile due to faulting is

not necessarily Lorentzian, or any other analytical peak

function, but is instead determined from the probability

correlation function. Given the complexity of determining a

reasonable faulting density from the powder pattern it is best

to utilize all the information possible from the measured

intensity, and properly treat the peak as the Fourier transform

of a real physical model. These are the fundamental assump-

tions of the whole powder pattern modeling (WPPM) method,

which has been developed to consider the most recent models

of faulting in f.c.c. materials (Estevez-Rams et al., 2008; Scardi

& Leoni, 2002).

8. Discussion

The fundamental differences between the disorder caused by a

deformation fault versus a twin fault has been clearly traced,

through the probability correlation function, to their effects

on the diffraction peak profile. Furthermore, when consid-

ering a finite stack the planar correlations have been shown

not only to depend on the fault position, but also on the extent

of the stack when considering twin faults, implying the same

must be true for the diffraction profile. In fact, recent simu-

lation studies have found that the presence of a fault at

different positions in a spherical nanocrystallite results in

similar trends on the peak broadening and shifting, as well as

dramatic differences in the observed fault probability

(Beyerlein et al., 2011). This is evidence that the description of

broadening which has been presented is not completely

masked by the broadening due to the small cross section of a

nanocrystallite. Nonetheless, for a proper description of the

peak profile from such a case, a convolution of the described

features in the intensity with those due to the particle size and

shape must be made. As the general form of the Fourier

coefficients is given in equation (21), modern reciprocal-space

modeling techniques like WPPM (Scardi & Leoni, 2002) show

promise in utilizing the developed model and performing this

convolution in reciprocal space. The same can be said

regarding the use of the developed model to describe the

effect of faulting in powders of crystallites with a broad size

distribution. The development of such a robust line-profile

analysis tool is ongoing, along with experimental validation of

the proposed model to describe faulting in small crystallites.

When considering the average correlation function, the

model allows for considerable flexibility as the possibilities for

different average planar correlation functions extend far

beyond the uniform fault position distribution demonstrated

in x4. If a more complex fault position distribution is found to

be suitable for a given system, then only the weights, wp, in

equation (14) need to be adjusted and the resulting peak

profile recalculated.

The current limiting assumption of the developed model is

that only one fault is allowed to exist in a given crystallite. In

this regard it might be true that the recursion equation model

(Warren, 1990; Estevez-Rams et al., 2008) is more appropriate

to represent faulting in many f.c.c. materials, especially those

with a large crystallite size. Accounting for multiple faults in

the developed theoretical framework is not impossible, but

becomes increasingly complex as the number of cases to

consider increases with the number of faults. For example, a

finite stack containing just two faults requires the considera-

tion of each fault being either a deformation fault or twin
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fault, as well as all the different possible distances between

faults and their positions relative to the boundaries. With the

computation power available in modern desktop computers, it

might be better suited to directly compute the correlation

functions and averages of the desired faulting scenarios. In

which case, the general expression of equation (21) is still

applicable to model the peak profile from the calculated

correlation functions.
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